Transferable Semi-supervised Semantic Segmentation
نویسندگان
چکیده
The performance of deep learning based semantic segmentation models heavily depends on sufficient data with careful annotations. However, even the largest public datasets only provide samples with pixel-level annotations for rather limited semantic categories. Such data scarcity critically limits scalability and applicability of semantic segmentation models in real applications. In this paper, we propose a novel transferable semi-supervised semantic segmentation model that can transfer the learned segmentation knowledge from a few strong categories with pixel-level annotations to unseen weak categories with only image-level annotations, significantly broadening the applicable territory of deep segmentation models. In particular, the proposed model consists of two complementary and learnable components: a Label transfer Network (L-Net) and a Prediction transfer Network (PNet). The L-Net learns to transfer the segmentation knowledge from strong categories to the images in the weak categories and produces coarse pixel-level semantic maps, by effectively exploiting the similar appearance shared across categories. Meanwhile, the P-Net tailors the transferred knowledge through a carefully designed adversarial learning strategy and produces refined segmentation results with better details. Integrating the L-Net and P-Net achieves 96.5% and 89.4% performance of the fully-supervised baseline using 50% and 0% categories with pixel-level annotations respectively on PASCAL VOC 2012. With such a novel transfer mechanism, our proposed model is easily generalizable to a variety of new categories, only requiring image-level annotations, and offers appealing scalability in real applications.
منابع مشابه
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
We propose a novel deep neural network architecture for semi-supervised semantic segmentation using heterogeneous annotations. Contrary to existing approaches posing semantic segmentation as a single task of region-based classification, our algorithm decouples classification and segmentation, and learns a separate network for each task. In this architecture, labels associated with an image are ...
متن کاملAdversarial Learning for Semi-Supervised Semantic Segmentation
We propose a method 1 for semi-supervised semantic segmentation using the adversarial network. While most existing discriminators are trained to classify input images as real or fake on the image level, we design a discriminator in a fully convolutional manner to differentiate the predicted probability maps from the ground truth segmentation distribution with the consideration of the spatial re...
متن کاملGenerative ScatterNet Hybrid Deep Learning (G-SHDL) Network with Structural Priors for Semantic Image Segmentation
This paper proposes a generative ScatterNet hybrid deep learning (G-SHDL) network for semantic image segmentation. The proposed generative architecture is able to train rapidly from relatively small labeled datasets using the introduced structural priors. In addition, the number of filters in each layer of the architecture is optimized resulting in a computationally efficient architecture. The ...
متن کاملLearning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text
In this paper, we address the question of what kind of knowledge is generally transferable from unlabeled text. We suggest and analyze the semantic correlation of words as a generally transferable structure of the language and propose a new method to learn this structure using an appropriately chosen latent variable model. This semantic correlation contains structural information of the languag...
متن کاملSemi-supervised Domain Adaptation for Weakly Labeled Semantic Video Object Segmentation
Abstract. Deep convolutional neural networks (CNNs) have been immensely successful in many high-level computer vision tasks given large labelled datasets. However, for video semantic object segmentation, a domain where labels are scarce, e↵ectively exploiting the representation power of CNN with limited training data remains a challenge. Simply borrowing the existing pre-trained CNN image recog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.06828 شماره
صفحات -
تاریخ انتشار 2017